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On A Posteriori Error Estimates 

By George Miel 

Abstract. Consider a sequence {xn}nfl0 in a normed space X converging to some 

x* E X. It is shown that the sequence satisfies a condition of the type 

Ix* - xnI < aIxn- Xn- 111 

for some constant a and every n > 1, if the associated null sequence {en}n=0, en 

= x*- xn, is uniformly decreasing in norm or if it is alternating with respect to 

any ordering whose cone of positive elements is acute. 

1. Introduction. A frequent situation deals with the approximation of an ele- 

ment x* of a metric space X by a sequence {xn}n=0 in X known to converge to x*. 

During actual computations, the problem of course is to stop at an element xn close 

enough to the desired limit x*. Letting d denote the metric, a common criterion con- 

sists of stopping when d(xn, xn-1) is within a given tolerance, thus hoping that d(x*, Xn) 

is reasonably small. This heuristic rule provides an actual error bound (assuming no round- 

off errors) if the sequence is known to satisfy the condition 

d(x*, Xn) < atd(Xnl Xn- 1 )5 

for some constant at > 0 and every n > 1. We call this condition a stopping inequality 

with constant o. 
Such an inequality holds for the sequence of successive iterates of a contractive map- 

ping. Leibnitz' estimate of the remainder of an alternating series yields a stopping in- 

equality for the sequence of partial sums. Knopp [12, Section 34] essentially used 

stopping inequalities to estimate the remainder of certain series; see also [15, Section 

1.2]. Applications to continued fractions have been studied in a series of papers: 

Blanch [2], Henrici and Pfluger [8], Merkes [14], Gragg [61, [7], Jefferson [10], 

Jones and Thron [11]. Ostrowski [18] applied the notion to the iterative solution of 

linear equations. Studies of a general nature were given by Varol [23] and Ostrowski 

[16], [17, Appendix Q]. Rowland and Varol [20] showed that a sequence of com- 

pound Simpson quadrature rules, in which the number of panels is successively doubled, 

satisfies a stopping inequality for functions whose fourth derivative does not change 

sign. This result was extended to an arbitrary Newton-Cotes rule by Rowland and Miel 

[19] . 
Existing results on stopping inequalities are diverse and scattered. For this reason, 

this work adopts a general point of view, thus hoping to uncover some unifying notions. 

Received March 29, 1976. 
AMS (MOS) subject classifications (1970). Primary 65J05. 
Key words and phrases. A posteriori error estimates. 

Copyright i) 1977, American Mathematical Society 

204 



ON A POSTERIORI ERROR ESTIMATES 205 

Our main result may be stated loosely as follows. A stopping inequality is readily 
available for a convergent sequence in a normed space provided that its associated se- 
quence of errors is uniformly decreasing in norm (i.e., geometrically convergent) or if 
successive errors are on opposite sides of zero. The first condition is of a purely metric 
nature and is already known, Varol [20, p. 4] and Ostrowski [16]. The second condi- 
tion can be made precise by order-theoretic considerations, namely, by requiring that 
the sequence of errors be alternating with respect to any ordering having the property 
that the cone of positive elements is not too wide. If the space has an inner product, 
then the width of the cone can be measured by a cosine. In this case, if the sequence 
of errors satisfies both the metric and the order conditions, then the resulting stopping 
inequality is sharper than the one that results from either single condition. 

The above ideas are developed in Section 2. The next section gives selected ex- 
amples and applications. Finally, Section 4 deals with the following problem: given 
linear mappings x*, xn: X - Y, n > 0, such that lim xn(f) = x*(f) for every , find 
constants at and subsets S(o) of X such that 

I|x*(C) - xn(f)ll ? a llxn f) Xn- x (f)Il 

for every f G S(o). The notions of Section 2 are applicable. It turns out that if X and 
Y are ordered, and if certain conditions are met, then the double-cone of positive and 

negative elements of X is contained in some S(az). 
Our notation is as follows. A metric space is denoted by a pair (X, d) where d is 

the metric. Only linear spaces over the real field R are considered in the sequel. We 

will expediently assume completeness, but it is clear that some of the results hold for a 
sequence in an incomplete space provided that it converges to an element of the space. 
We will use the standard symbols R , 1P, LP [a, b], . *IIp for the classical spaces and 
their norms. 

We recall some order-theoretic notions, [9]. An ordering for a linear space X is 

a reflexive and transitive relation < such that 
(i) if x y, thenx + z <y + z for every z EX, and 

(ii) if x ?y, then Xx < Xy for every scalar X > 0. 
If a < b, then an order-interval is [a, b] = {x la ? x ? b}. A set A is order-convex if 
and only if it contains every order-interval [a, b] with a, b G A and a ? b. 

A cone in a linear space X is a nonvoid subset P of X such that P + P C P and 
XP C P for every X > 0. Some authors, for example Jameson [9], use the term wedge. 
The trivial cone is the singleton {0}. The cone associated to a given ordering < is P = 

{x lx > 0}. On the other hand, any given cone induces an ordering defined by: x ?y 
if and only if y - x E P. We will denote an ordered linear space by (X, P) where P is 
the cone of positive elements. An ordered Banach space is denoted by (X, P, 11 * 11) 
and an ordered Hilbert space by (X, P, ( *, *) where 11 and ( , are respectively 
the norm and inner product. 

2. Development of the Theory. In this section, we derive fundamental conditions 
which imply stopping inequalities for sequences in metric and ordered normed spaces. 
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THEOREM 2.1. Let (X, d) be a metric space; suppose that the sequence {xn} n=0 
in X converges to some x* E X; let ,3 E (0, 1). 

(i) If d(x*, xn) 6 od(x*, xn.), then d(x*, xn) ? ad(xn, xn-1) where a 

3(1 - 0)-) 

(ii) For any o > 0 there is a subsequence {xn_} I such that d(x*, xnp) < 

a~d(XnP , Xnp_d) p > 1 

Proof: For (i), see [23, p. 4] or [16]. To prove (ii), suppose that n0 = 0, n1, 
... , np-, have been chosen. Since lim d(x*, xn) = 0, we can choose np > np-1 such 

that 

d(x*,xn ) ?- 1d(x*, xn )a 

The result follows from (i). 
An important application of (i) occurs when the sequence {xn} consists of the 

iterates of a contractive mapping. 
Next consider an ordered Banach space (X, P. I *11). A sequence {en}n0= C X 

is a null sequence if limIlenII = 0. It is alternating if (-1)nuen E P where a is either 1 
or -1. Note that a sequence {xn} C X, converging to an element x*, satisfies the stop- 

ping inequality 

|Ix* -Xn 11 6 a-Ilxn Xn-1 11 

if and only if the corresponding null sequence {en}, en = x* - xn, satisfies the same 

stopping inequality. 
LEMMA 22. Let B denote the closed unit ball of an ordered Banach space 

(X, P. 11 * 11). Consider the following statement: 
(i) B is order-convex. 

(ii) llxII S lIx + yll for every x, y E P. 
(iii) lIxiI < IIzlI whenever 0 6 x 6 z. 

Then (i) implies (ii), and (ii) is equivalent to (iii). 
Proof. (i) X (ii): Take nonzero elements x, y G P. We have that P n (-P) = 

{O} and so lix + yll = a > 0. Hence 0 6 x/a 6 (x +y)fa. But the order-interval [0, 
(x + y)/a] is in B. Thus xfa e B, which implies that lIx/all < 1 = lI(x + y)/aII. 

(ii) (iii): Suppose that 0 S x 6 z; then x, y = z - x E P and so lxiI < lizil. 

(iii) (ii): If x, y EP, then 0 6 x S x + y. Hence lIxiI < lix + yll 

Definition 2.3. We say that an ordered Banach space (X, P, ii *1) has an acute 

cone if condition (ii) or (iii) of Lemma 2.2 holds. 
The term acute in the above definition is motivated by the interpretation of this 

property in terms of angles for inner product spaces. The lemma states that if a space 
has an order-convex unit ball then it has an acute cone of positive elements. The con- 
verse is not true as shown in Example 3.2 in the next section. However, we note that 
if a cone is acute then it is normal and so the space is then locally order-convex, [9, 
Section 3.2]. 

THEOREM 2.4. Let (X, P, 1*) be an ordered Banach space with an acute cone 
P. Any alternating null sequence {en}n- = in this space satisfies the stopping inequality 

Ilen 1 ? jen, -en-e1 1, n > 1. 
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Proof Either en, -en-1 E P or -en, en-I E P. In either case, (ii) of Lemma 2.2 
yields the result. 

The following lemma characterizes an acute cone in an ordered Hilbert space. 
LEMMA 25. An ordered Hilbert space (X, P. (, )) has an acute cone if and 

only if (x, y) > O for every x, y E P. 
Proof We use the identity (law of cosines): 

lix + Yll2 = 1Ix112 + I1YI12 + 2(x, y). 

The sufficiency is clear. To show necessity, suppose that (x, y) < 0 for some x, y in P. 
Choose z = Xy where X > -11x112/2(x, y). Then z E P and 

(X, y) = X(x, y) <-?y211X112, 

1lz112 > IIxll2 + 1zI12 + 2(x, Z) = lx + z112, 

which implies that the cone is not acute. 
Consider an ordered Hilbert space (X, P, ( * ) with a nontrivial cone P; we de- 

fine the cosine of P by 

-y = inf{(x, y) I x, y EP and IIxII = IIYII = 1}. 

Observe that the space has an acute cone if and only if y E [0, 1], namely, if the angle 
is at most 1r/2. In the following lemma, the backward difference Ven is defined as 
usual by Ven = en - en-1e 

LEMMA 2.6. Let {en} be a sequence in an inner product space and let a > 0. 
Then I1 en 11 < ail V en 1I if and only if (aVen + en, xVen - en) > O. 

Proof Expand the norms in the stopping inequality in terms of inner products. 
In addition to Theorems 2.1 and 2.4, the following results hold in ordered Hilbert 

spaces. 
THEOREM 2.7. Let {en} be a null sequence in an ordered Hilbert space (X, P. 

* ) with a nontrivial acute cone P. Let : be a constant in (0, 1) and let y be the 
cosine of P. 

(i) IlenII ?Ilen - en- l if and only if (en-1, en) < ??Ien-112. 
(ii) If {en} is contained either in P or in -P, 11 en 11 < 11 en - en- 1 II, and y > ?, 

then the sequence {IIenII} is monotone decreasing. 
(iii) If IlenI < i3len-e 11, n > 1, and {en} is alternating, then IlenlII o1Ilen -en-l 11, 

n> 1, where a' = 3(32 + 2fry + 1)-/2. 

Proof If at = 1, then (caVen + en, aVen - en) = -2(en, en-) + l en-1 112 , and 
thus, (i) follows from Lemma 2.6. 

To prove (ii), we use (i): 

K125 en- en 1 Ilen-Il1 
(en-I, en) < l _llen_ (Ile 

< 2 

IlHen-111 
'Y < - 

2 Ie l Ile 11 < Ilen-111 
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Finally, to prove (iii), assume without loss of generality that -en, en-1 E P and use 
the law of cosines: 

Ilen -_'en-112 = llenll2 + jen-1112 -2(en, en-) 

= lJenll2 + llen- 112 + 2Ijenll iien-iKeli en) 

> llenll2 +-lle112 + lle 112. 13 2 11e 2'1jen 

The last inequality yields the desired result. 
Consider the functions 

a(o) = 0(1 - 1)1 3(pB A) 13(02 + 2,y + 1)-1/2, 

where 0 <13 < 1 and 0 -y ? 1. An elementary analysis shows that 

(1) ca'(05, y) < c(,) for every j3, y. 
(2) oa(13) is strictly increasing and unbounded; also, a! ? 1 if and only if 13 'h. 
(3) a'(13, y) is strictly increasing in 13, strictly decreasing in y, and 0 < o'(03, 7) < 

(2y + 2)1/2 ?v'2/2. 
Hence, given a null sequence which satisfies the condition of (iii) of Theorem 2.7, 

the stopping inequality with constant 0a' is sharper than the inequalities with constant 
1 of Theorem 2.4 and with constant at of Theorem 2.1. Note also that the latter in- 
equality is sharper than the former only when 13 < ?. 

3. Examples and Applications. Recall that the usual ordering of a linear space 
of real-valued functions on a set T is defined by: x ? y if and only if x(t) ? y(t) for 
every t E T. The cone associated with the usual ordering will be denoted by P. 

3.1. Real Numbers. We may consider R as a Hilbert space with inner product 
(x, y) = xy and the theory of Section 2 holds. For example, statement (i) of Theorem 
2.7 becomes: Ien I < Ien - en-1 | if and only if en-1 = 0 or enlen- 1 ? ?.- 

Define a function t: R3-+ R by t(o, x, y) = ac2(y - x)2 
_ y2 . As in Lemma 2.6, 

we can easily show that a null sequence {en} in R satisfies a stopping inequality with 
constant at if and only if t(o, en-I, en) > 0, n > 1. For fixed at, the condition t(o, x, y) 
> 0 defines a double-cone in R2 bounded by the two lines ox - (o - l)y = 0 and ox 
- (o + l)y = 0. Thus a null sequence {en} C R satisfies a stopping inequality with 
constant at if and only if the sequence {(en-1 en)} C R2 is in that double-cone. 

3.2. Sequence Spaces. The usual cone P is clearly acute in each of the spaces 
jq 1 < q < oo. On the other hand, the cone associated with the lexicographic ordering 
is not acute in any one of these spaces. To see this, verify that x = (0, 1) and y = 

(?,-1) violate condition (ii) of Lemma 2.2. 
Let Bq denote the closed unit ball of the space (R2, P, 11 I glq); q = 1, 2, oo. The 

balls B2, Bo, are order-convex but B1 is not. Indeed, if a = (al, a2), b = (bl, b2) E 

Bq and a < b then b E (a + P) n Bq. The order-interval [a, b] = {x Iai 6 x, ? bi4 is 
a rectangle always contained in B2 and Boo but not necessarily in B1. 

3.3. Function Spaces. The usual cone P is acute in each space L [a, b ], 1 6 q ? oo. 
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Choose a sequence {x, } in P n L2 [a, b] such that {IIIxII2} is monotone decreasing. 
Let {e,,} be a null sequence in R and define a null sequence of functions {en} by 
en(t) = enx,(t). Let n > 1, 0 < ( < 1, a = (31 - 3-)1, and at = 3(2 + 1)-1/2. Then 

(1) If en I < fen-. 1I, then IIen 112 < o Ien -en- 112 e 

(2) If { en } is alternating, then II en 112 < I1en - en-1 11 2 e 

(3) If Ien I < p3 en- 1 1 and { en } is alternating, then IIenII2 e aIl en - en 1112e 

These statements follow from Theorems 2.1, 2.4, and 2.7. 
Next, we give an example of spaces whose cones are not acute. Let m > 1 and 

consider the spaces (Cm [a, b] , Pm I II) where 
m 

Pm = {X I X(m)(t) > 0 for all t}, l5xii =j IIX(?IL. 
i=O 

Verify that the functions x(t) = t and y(t) = -1? violate condition (ii) of Lemma 2.2. 

3.4. Infinite Series. Given a series San, an E R, consider the stopping inequality 
with constant at for the corresponding sequence of partial sums. This means that 

|Ean+i | 6 olanl. 

It can easily be shown [15, Theorem 1.2.2] that if a series passes the ratio test, namely, 

Ian+ 1 Ian I < r < 1, then it satisfies a stopping inequality with at = r(l - r)- 1 . Knopp 
[12, Section 34] thus gets error bounds for the series calculation of roots and loga- 
rithms. 

3.5. Continued Fractions. Consider a convergent simple continued fraction with 
positive elements. Let {en} denote the corresponding null sequence of errors. Then 

{en} is alternating and {lenl} is strictly decreasing, [3, p. 409]. It follows that lenl 
1h ? en - en- 1i This stopping inequality can be applied, for example, on the Shanks 

procedure for calculating logarithms [22]. For various applications of stopping inequal- 
ities to continued fractions, see the references given in the introduction. 

3.6. LinearEquations. Ostrowski [18] used the metric condition that the errors 
be uniformly decreasing in norm to get a posteriori error bounds for the iterative solu- 
tion of linear equations. 

Collatz and Schrdder [4, pp. 352-353] gave conditions under which a type of 

splitting of nonsingular matrix yields monotone iterations under the usual ordering of 
Rn. This result was extended for the least-squares solution of rectangular systems and 
for general orderings by Berman and Plemmons [1, Theorem 4]. One can thus get a 
sequence {xn} converging to a solution x* and such that 

X 0 < * * <X 2k < * * * S < SX2k+I < X 

If the cone associated to the ordering is acute, then the stopping inequality holds with 
a = 1, since the errors are successively positive and negative. 

4. Sequences of Linear Mappings. In what follows, we make the following as- 

sumptions: (X, P) is an ordered linear space, (Y, Q, 11 * 11) is an ordered Banach space 
whose cone Q is acute, and en: X Y, n > 0, is a sequence of linear mappings such 
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that limI1en(x)II = 0 for every x C X. This section deals with the problem of finding 
constants a and elements x C X such that I1en(x)I < aIllen(x) - eni1(x)ll. 

Recall that a mapping L: X -+ Y is said to be positive if L(P) C Q. In particular, 
if L is linear then L is positive provided that L(x) < L(y) whenever x < y. For any a 
E R, define the set 

S(a) = {x E X I Ijen(x)II < allen(x) - ei-l(x)ll, n > 1}. 

Elementary properties are: 

S(a) always contains 0, 

Xx C S(a) for every x C S(a) and every X C R, 

S(6') C S(a) whenever a' < a. 

The following theorem gives conditions which imply that the double-cone P U (-P) is 
contained in some S(a). 

THEOREM 4.1. Let a be either 1 or -1, let f3 denote a constant in (0, 1), and let 
n = 0, 1, 2, . . . 

(i) If (-1)naen are positive, then P U (-P) C S(1). 
(ii) If aen and foen - aen + 1 are positive, then P U (-P) C S (a) where a = 

3(1 - 0)1 . 

(iii} Suppose that Y is a Hilbert space whose cone Q is nontrivial and has cosine 
,Y. If (-1)noen are positive and 11 en + 1 (x)II ? t31 en(x)II for every x E P, then P U (-P) 
C S(a') where a' = 3(32 + 2fty + 1)-1 /2. 

Proof If (-1)n(oen are positive and if x C P U (-P), then {en(x)} is an alternat- 
ing null sequence in (Y, Q, 11 - 11). Thus, Theorem 2.4 implies that x C S(1). This 
proves (i). 

For (ii), if x E P U (-P), then a'x C P where a' is 1 or -1. Consequently, 

aen(a'x) and 3oen(W'x) - aen+ 1(a'x) are in Q. Hence 

0 ? a en + 1 (a'x) ? Seen (a'x). 

Since the cone Q is acute, condition (iii) of Lemma 2.2 holds. It follows that 

||len +l1(x)ll < 01j en(41II 

Thus (i) of Theorem 2.1 implies that x C S(a), a = 13(1 - )-13. 
To prove (iii), note that if x E P U (-P) then {en(x)} is an alternating null se- 

quence and Ien + 1(x)II ? 3II en(x)1I. The result follows from (iii) of Theorem 2.7. 

In the following theorem, we consider two ordered Banach spaces (Xi, Pi, Il I 1li), 

a sequence of continuous linear functionals en: X1 i Y R, n > 0, such that lim en(x) 
= 0 for every x, and subsets S(a) of the space X1. We recall some definitions [13, 
Section 4.3]. The dual Xi* of Xi is the Banach space of all bounded linear functionals 

0: Xi - R, with the norm 

11011 = sup I(x)I I 
llxllI<1 
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The adjoint of a bounded linear map t: X1 X2 is the map t*: X2* X* defined by 

t*(Q)(x) = 0 o t(x). The null space of t is N(t) = {x It(x) = 0}. 

Consider a decomposition en = U n o t as shown in the following diagram: 

e 

t /n 

x2 

Sard's Theorem [21] yields such decompositions. Peano's Theorem [5, p. 70] is the 

special case when en is a certain type of error functional annihilating polynomials of 

some degree. The next theorem gives conditions on such decompositions so that P1 U 

(-P1) is contained in some S(a). 
THEOREM 42. Let t: Xi X2 be a continuous, linear, sur/ective, and positive 

mapping such that N(t) C nn>ON(en). Define a sequence {un}n=o C X2* by un = 

(t*)-l(en). Let a be either 1 or -1, let ( be a constant in (0, 1), and let n 1, 2 .. 
(i) If (-1)n oun are positive, then P1 U (-P1) C S(1). 

(ii) If Gun and f0aun - uun+ 1 are positive, then P1 U (-P1) C S(qc) where a = 

f3(1 -)y 1. 

(iii) If (-1)nGun are positive and Iun+ 1 (0) I 6 IunQ()I for every k E P2, then 
P1 U (-Pa) C S(t') where a' = 3(1 + 0)-f. 

Proof: A special case of Sard's Theorem [13, p. 253] implies that en = un o t. 
Define 

T(q) = {y C X2 I lun(Y)l 6 aIun(Y) - uni(y)I, n > 1}. 

Theorem 4.1 applied on {un} yields 

(i) P2 U (-P2) C T(1), 
(ii) P2 U (-P2) C T(((l - 3)1), 

(iii) P2 U (-P2) C T(j(1 + (3)-). 

In (iii), we used the fact that the usual cone in R has cosine y = 1. The positivity of 

t implies that y = t(x) E P2 U (-P2) for every x C P1 U (-Pi). Thus, if P2 U (-P2) 
C T(X) then P1 U (-P1) C S(X). The desired conclusions follow. 

Example 4.3. Let N > 1 be a fixed integer; let d = N if N is odd and d = N + 1 

if N is even; let xn(f) denote the value of the compound (N + 1)-point Newton-Cotes 

quadrature rule with 2n panels applied on a function f; let x*(f) be the exact value of 

the desired definite integral. It can be shown that 

Ix*(f) - Xn() < lxn(J) - Xn-i(hI, n > 1 

for any function f which has a continuous (d + 1)th derivative of constant sign. We 

now relate this result to Theorem 4.2. 
Consider the ordered Banach spaces 
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where 
IfIq = max f) 

P2 is the cone associated with the usual ordering of C [a, b], 

P1 = (p2) t: X1 >X2, t(f) =f<d+1) 

Consider the error functionals en: X1 )- R, en(f) = x*(f) - xn(f). Since each en 

annihilates the polynomials of degree d, there is a decomposition 

en =un ot, un(Q) = f0(t)Kn(t) dt, 

where Kn(t) is the Peano kernel associated to en. 
By choice of Pi, t is positive. The functionals oun,, a = -1, are positive because 

the kernels Kn(t) are nonpositive. By (ii) of Theorem 4.2, if we can show that there 

is a constant f3 E (0, 1) such that the mappings ,Boun - Oun+ 1 are positive, then Pi U 

(-P1) C S(3(1 -0)- 1). However, it can be shown (the proof is involved [19]) that the 

inequality 

aKn + 1 (t) < ocrKn (t) 5 t E [a, b 1 

holds with 'h = ?. The pointwise inequality of the kernels implies the positivity of the 

functionals ?houn - aun+1. Consequently, P1 U (-Pi) C S(1). 

5. Conclusion. This paper adopted a general point of view in order to find uni- 

fying notions regarding stopping inequalities. It turns out that such an inequality holds 

for a null sequence in a normed space if it is uniformly decreasing in norm or if it is 

alternating with respect to some ordering whose cone -is acute. This principle should 

perhaps be of interest in the investigation of new applications of a posteriori error esti- 

mates. 
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